Sensory Glove

Design Document

CSE-453

Gino Notto, Jason Gregory, Sherif Attia, Fan Meng

TABLE OF CONTENTS

THE SYSTEM

HARDWARE DIAGRAM

CHARACTER MAPPINGS

SOFTWARE DIAGRAM

SOFTWARE DESCRIPTION

PARTS LIST

APPLICATION SCREENSHOTS

(€8]

(O

(o)}

~

(o6}

THE SYSTEM

For most people, we take our ability to see and hear for granted. These two vital senses
allow us to communicate with others both verbally and visually. For those who are
deaf-blind, this communication is much harder. Our project aims to bridge that

communication gap that exists in the deaf-blind community.

The Sensory Glove utilizes very affordable hardware that is readily available. Built using
a Raspberry-Pi, some Cat-5 ethernet wire, and 5 Flex sensors by adafruit, we were able
to keep the cost of the prototype relatively low when compared to other similar products
that exist. All this hardware is all wired through a Gertboard, an 1/0 expansion board for

the Raspberry-Pi.

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer
monitor or TV, and uses a standard keyboard and mouse. It is a capable little device
that enables people of all ages to explore computing, and to learn how to program in
languages like Scratch and Python. For our project, it acts as the heart of the device. It
is responsible for sensing the input form the flex sensors and communicating that to the
Android device. In this prototype, the Pi, the phone, and the sensors are all wired
together. However, in the final product the internals would communicate via bluetooth

sockets. This is a feature we plan to add later on as we first wanted to focus on getting

a basic prototype working and then expanding that to include features such as bluetooth

communication.

The adafruit flex sensors are ultra-thin and flexible printed circuits, which can be easily
integrated into force measurement applications. We read the output of the sensors by
connecting them to the Raspberry Pi through Cat5e ethernet wire. We give extra wire
between the Raspberry Pi and sensors for the system so it is easier to maneuver.
However when a final product is created a small battery powered microchip would make

it mobility and ease of use even better.

With five sensors attached to a glove and connect to a Pi, the user can perform a series
of finger movements that map to characters of the alphabet. These characters are then
sent to the Android device which utilizes Google’s Text-to-Speech API to speak the

words out loud.

This prototype, despite being very basic, served as an excellent device for testing and

validating our initial idea. Now that we have a basic understanding of the hardware and
a much more realistic set of requirements than what we originally had, we can use this
prototype as a stepping stone to building a device that can truly bridge the gap of

communication that exists in the deaf-blind community.

HARDWARE DIAGRAM

Phone App

Voice Module

text

T3

text

—

Voice Output

Controller

Client Module

text

text

Glove

Server (Fi)

Flex Sensors

l.._.\ {int)

Controller l

Combination
Detector

W

Translator

text

CHARACTER MAPPINGS

1 - finger bent

0 - finger straight

1 - palm facing up

a:

0 - palm facing down

a:

]

1T

0

v Vv ia

0

0

0

SOFTWARE DIAGRAM

<< Javanterface»

Jawa Cl .
nwwmﬂ_omw.ﬁ €SensorlUpdateListener
v L code sensors interfaces
code.gpio
mnﬁmxmo_.__ug: Sting o sensorlpdated(|Sensor) void
*f unexponPath: String o finshecFoling()void
* qpioBasePath: Strin 4 .
-_\pdateListeners
; n.n,_m{m Clagszs <2 Javanterfaces»
i valuePath: String (9FexSensor isensor
o gpioPath: String : code sensors code sensors interfaces
. i reyiousstate: int
o_”%_%_:ﬁ_é -myfin : N 9 hasChangedstate() boolean
o_”om_om._:ﬁ_a_mm_ogon_g Alalpllll o getValuelyint
g setDirection(GPIOMode)vaid | E . QetState()int
- o FLEXED: int
g Export(int)void G_”_mxmma_n:na:g__m_ Jllllil.w%mga.r m%c . tick()void
—_— code L it . .
[Unexpart(it):oid 0t 9 QetFinhumber()int
m writeToValuelint) void @ FlexSensorContraller(Server, SensarEvertl oap () & FlevSensar(int)
@ readFromialue() it @ sensorlipdated(Sensorvaid n&mmagm.ﬁuu hasChangedState() boolean -_sensurs | 0.1
@ sethiode(GFICMode) void o finishedPaling()void (9htain @ Qettaluel int
d .
o setLow(Jvaid o getstate()int
o setHigh()void @ Main() o tick()void e Java Classss
@ readPin{)it om:_:ga: woid| | @ getFinbumber yint @mm=m=qmqm==.==_u
- dhe, 0.1
-5l code
-_Currentiiods 0.1 < Casass S DEFALILT_FREQUENCY: nt
<laa Clagass -~]
<< Java Enumeraiani=> (®Server (9DatabaseController o mLaaperThread: Thread
(3ePIOMod code 2Java Clagsss T
EJ nde tode 0 SensorLooper @ SensorEvertLoop()
code gpin R R o _fiiaps: Hashiapeinteger =iring: e \\\x@ & SensurEvertLoop(nt)
NPT GIOMode o bis: BufferedReader o DatahaseContraler) B —— @ addsensorLipdateListener(SenaorlpdateListener) vaid
% OUTRUT: GRIOMade o lock; Object FagtControllr() DatabaseCantrollr R @ removeSensorlpdateListener(senaorlpdateListener) vaid
£ - 3 getTet(int):String : 2 registerSensor(|Sensar) void
©'GFOMode() o_”mmzm;_é Y - - controler o_”mmag_.g_uma_.a c o
)) g loadDatabasel)void @ remaoveSensor(Sensor) void
& sendTaPhane(String):vaid 0.1 @ run()wvoid
caJava Clags»s coJava Classss o Clagass celava Clagess -] faim Clagsrs
©oPIOTest (OPIOReatException | | OCPIOWriteExcepion (GOPIOCreatonFaedExcepion | | (GCPIODeleonFaiedExcepion | | CPIOModeSeFalureExcepton
st gpitest code gpio.exceptions cade gpo ehceptions code gpio.eceptions code gpio.eceptions el
S Fonr: . . Rl i .
FePOTest) 7 serialVersionlID: lon o setalersiorl: on 5 serialVersionUD: lon 5 serialVersionD: lon ! starsiorl0: n
T , : & . i
 GPIOReadEception) @ CPOWrteException() GPIOCEatorFaledException) GPIDktorFaledException) @ CPOWodeSetFailreException()

SOFTWARE DESCRIPTION

The software is built upon the idea of abstractions. The software first aims to
abstract away the lowest details by creating a sensor base class. Each sensor is then
derived from this class. On the next level, we have the sensor driver. This is a real time
feedback loop that polls the sensors at a set rate. For this particular project, we are
polling and updating the sensors at a rate of 30Hz. This event loop employs the
Observer pattern for a robust and easily extendable system by further abstracting away
the fact that there is a piece of hardware at all. By registering an update listener, the
user can receive asynchronous updates through the dedicated method public void
sensorUpdated(ISensor); From there, handling each sensor can be done via
polymorphic code to reduce code smell and improve maintenance and readability of the
code. At this level in our abstraction, you are given some easy accessor methods to tell
you some information such as whether the sensor changed or the value of the sensor.
Using this top down approach, building applications on top of these in-house library is

relatively easy as it is backed by a large code base underneath. See the diagram below.

GPIO Layer

Sensor Layer

Sensor Controller
Layer

App
Layer

The Software Abstraction Diagram

GPIOPIn - This class deals with bridging the hardware and software gap. It
abstracts away dealing with the files that point to the actual pins as well as provides

error handling and detection.

Sensor Looper - This class creates a new thread that manages the event loop.
It works in a “plug-and-play” fashion such that sensors can be registered or deregistered

in real time.

ISensor - The template of which each sensor is implemented with. This generic
interface allows for polymorphic code rather than cumbersome and broken imperative
code using large switch statements. It also allows any sensor to be compatible with the

Sensor Looper.

FlexSensor - This is the actual implementation of a flex sensor and is specifically
for it. It provides a differential range that stops it from swinging from one state to the

other.

Flex Sensor Controller - This is at the application level. It ties n flex sensors
together and manages their state. Once all sensors have been polled and updated, it
then turns all of their combined states into a byte. For instance, if 2 sensors are bent
and 3 aren’t then the result may be something like 70070. This byte can then be sent

easily to a server or to the DatabaseController.

DatabaseController - This loads in the mapping database and allows for bytes

to be translated to words.

Server - This class creates a server for which the phone can connect to all. All
connected devices will receive updates in the form of well formatted JSON objects
which contain the string that was “typed” using the glove. This allows for a wide range of

phone or desktop applications to communicate with the device.

10

PARTS LIST

Manufacturer | Part Number | Price No. | Link
Raspberry Pi | RASPBERRY-P | $34.99 | 1 900.al/tSs0A]
I-STK
Short adafruit $7.95 |5 http:/goo.gl/tK
Flex/Bend Product ID: ryrs
Sensor by 1070
adafruit
Catse CPA-1276-1 $7.45/ | 1 g00.9l/egDjGn
100ft /
/ -
N ,/////
MCM 83-14460 $39.99 |1 g00.gl/MiJdyJ

Gertboard

11

http://goo.gl/tSs0Aj
http://goo.gl/egDjGn
http://goo.gl/MiJdyJ

APPLICATION SCREENSHOTS

i © ""d = 3:57

SensoryGloveTalker

This is a screen shot, but

when the button is

pressed | talk out loud!

This is written using the

glove! NEW BUTTON

12

REFERENCES

. http:/lIwww.petervis.com/Raspberry_ Pl/Gertboard_Raspberry P

i_Expansion/Gertboard_Analog_to_Digital_Converter.html
. http://lwww.petervis.com/Raspberry_ Pl/Gertboard_Raspberry P

i_Expansion/Gertboard_GPIO_Pins.html

. http://www.mcmelectronics.com/content/ProductData/Manuals/
83-14460.pdf

. https://lwww.raspberrypi.org/documentation/hardware/raspberr
ypi/spi/README.md

. https://www.sparkfun.com/tutorials/389

. https://www.youtube.com/watch?v=2rWkdftDh50

13

http://www.petervis.com/Raspberry_PI/Gertboard_Raspberry_Pi_Expansion/Gertboard_Analog_to_Digital_Converter.html
http://www.petervis.com/Raspberry_PI/Gertboard_Raspberry_Pi_Expansion/Gertboard_Analog_to_Digital_Converter.html
http://www.petervis.com/Raspberry_PI/Gertboard_Raspberry_Pi_Expansion/Gertboard_GPIO_Pins.html
http://www.petervis.com/Raspberry_PI/Gertboard_Raspberry_Pi_Expansion/Gertboard_GPIO_Pins.html
http://www.mcmelectronics.com/content/ProductData/Manuals/83-14460.pdf
http://www.mcmelectronics.com/content/ProductData/Manuals/83-14460.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md
https://www.sparkfun.com/tutorials/389
https://www.youtube.com/watch?v=2rWkdftDh5o

